Anonymization and Risk

Ira Rubinstein Woodrow Hartzog

8/17/2015

Type
journal-article
Region
United States
Sector
Category
Open Data, Data Analysis
Methodology
Conceptual Framework
Objective
Effectiveness, Privacy

Abstract

Perfect anonymization of data sets has failed. But the process of protecting data subjects in shared information remains integral to privacy practice and policy. While the deidentification debate has been vigorous and productive, there is no clear direction for policy. As a result, the law has been slow to adapt a holistic approach to protecting data subjects when data sets are released to others. Currently, the law is focused on whether an individual can be identified within a given set. We argue that the better locus of data release policy is on the process of minimizing the risk of reidentification and sensitive attribute disclosure. Process-based data release policy, which resembles the law of data security, will help us move past the limitations of focusing on whether data sets have been “anonymized.” It draws upon different tactics to protect the privacy of data subjects, including accurate deidentification rhetoric, contracts prohibiting reidentification and sensitive attribute disclosure, data enclaves, and query-based strategies to match required protections with the level of risk. By focusing on process, data release policy can better balance privacy and utility where nearly all data exchanges carry some risk.